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Abstract

This is a working document for collecting profiling information of various LLNL HPC codes.

1 Introduction

For each application, we describe the application simulation loop, domain decomposition, the com-
putational workload and communication structure. We also provide some simulation examples and
profiling data.

2 pF3D

pF3D [1, 2] is a multi-physics code used to study laser plasma-interactions in experiments conducted
at the National Ignition Facility (NIF) at LLNL. It is used to understand the measurements of
scattered light in NIF experiments and also to predict the amount of scattering in proposed designs.

2.1 pF3D Simulation Loop

2.2 Domain Decomposition

pF3D operates on a logical three-dimensional (3D) process grid whose Z-direction is aligned with
the laser beam. Let us suppose that the global simulation has nxtot ×nytot ×nztot zones and each
process owns a domain of size nxloc × nyloc × nzloc zones.

nxtot = px × nxloc (1)

nytot = py × nyloc (2)

nztot = pz × nzloc (3)

px , py and pz are the number of processes in the X, Y and Z direction respectively in the
logical 3D grid. It should be noted that the mapping of this logical grid to the actual cores and
interconnect topology is machine-dependent.



2.3 Computational Workload

2.4 Communication Structure

The simulation has three distinct communication patterns that are used in: the transverse deriva-
tives in Maxwell’s equations (hereafter called the transverse wave equation), light advection, and
solving the hydrodynamic equations. The transverse derivatives are handled using a spectral
method, so they involve two-dimensional (2D) Fast Fourier Transforms (FFTs) in planes orthogonal
to the laser, i.e. the XY -planes. More specifically, they are solved by gathering complete lines in
the X and Y directions into the memory of a single process using MPI Alltoall calls and then
performing ordinary one-dimensional FFTs.

The light advection pattern consists of exchanging planes using MPI Send and MPI Recv calls be-
tween adjacent domains in the Z-direction. The sixth order advection option requires the exchange
of up to three planes with the neighboring domains.

The hydrodynamic pattern consists of nearest-neighbor exchanges of the data on domain faces
in the positive and negative X, Y and Z directions (using MPI Isend’s and MPI Recv’s). This
pattern is often referred to as a “halo exchange”. The hydrodynamic equations are typically solved
after every 50 light propagation steps and take much less time than either of the other two patterns.

Given this structure, pF3D’s natural domain decomposition is to have pz ”slabs” (several ad-
jacent XY planes) which are split further into px rows and py columns resulting in px × py × pz
domains each assigned to an MPI process. Within each slab, rows and columns are arranged into
sub-communicators for the all-to-all’s discussed above. In particular, for weak scaling the mesh is
extended along the Z-direction, adding more XY slabs and thus using more processors.

2.4.1 Transverse Wave Equation

Let’s pretend that the MPI Alltoall is implemented using point-to-point messages. Each process
“owns” nxloc × nyloc zones within a Z-plane. When pF3D passes messages in the X-direction,
those nxloc × nyloc zones are split evenly between the px processes in that row of the domain
decomposition. A process with logical coordinates (x, y, z) sends messages to px processors in its
row with coordinates (∗, y, z). The size of each message in bytes is:

msgx = sizeof (complex ) × nxloc × nyloc/px

For the Y-direction all-to-alls, a process with coordinates (x, y, z) sends messages to py other
processes in its column with coordinates (x, ∗, z). The equivalent sizes when passing messages in
the Y-direction are:

msgy = sizeof (complex ) × nxloc × nyloc/py

2.4.2 Light Advection

In the light advection pattern, a process in an XY domain with coordinates (x, y, z) communicates
with corresponding processes in the two adjacent XY domains, (x, y, z−1) and (x, y, z+ 1). Three
planes are passed in the downstream direction and two in the upstream direction. These messages
are larger than FFT messages because they are sent to nearest neighbor domains, not to all the
domains in a row or column. The size of the larger of the two messages (in bytes) is:

msgadv = 3 × sizeof (complex ) × nxloc × nyloc



2.4.3 Hydrodynamic Exchange

For the hydrodynamic calculations, every process communicates with its six neighbors in 3D similar
to a seven-point halo exchange. A process with logical coordinates (x, y, z) communicates with
(±x, y, z), (x,±y, z) and (x, y,±z). Each message consists of one plane of real numbers:

msghydro = sizeof (real) × nxloc × nyloc

2.5 Simulation Examples

Table 1 shows the number of bytes exchanged between pairs of processes for pF3D simulations that
have been run on the Blue Gene/L system at Lawrence Livermore National Laboratory (LLNL)
and Cielo, a Cray XE6 at Los Alamos National Laboratory. It also shows three simulations that are
candidates to be run on Sequoia, a Blue Gene/Q system at LLNL. The three Sequoia simulations
have the same total number of zones and will use the same number of cores. The first one will use
four MPI processes per core, the second will use two processes per core, and the third will use one
process per core.

System px py pz nxloc nyloc nzloc msgx msgy

Blue Gene/L 32 32 192 96 64 18 1536 1536
Sequoia 128 128 256 128 128 16 1024 1024
Sequoia 64 128 256 256 128 16 4096 2048
Sequoia 64 64 256 256 256 16 8192 8192
Cielo 16 16 128 640 192 34 61440 61440
Cielo 16 32 128 1280 160 34 102400 51200

Table 1: Message sizes (in bytes) for the transverse wave equation phase of pF3D (1D FFTs)

2.6 Profiling Data
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Figure 1: Profiling of pF3D on Blue Gene/Q (Mira)



3 Qbox

Qbox is a first-principles molecular dynamics (FPMD) code used to study the electronic structure of
molecular systems to understand their material properties. The method uses a quantum description
for electrons which is computationally intensive. Unlike classical molecular dynamics, FPMD does
not have a simple domain decomposition that restricts communication to nearby processors, but
instead necessitates frequent non-local communication. Many problems of interest require efficient
strong scaling to hundreds of thousands of processors, where communication costs can be significant
or even prohibitive.

3.1 Qbox (FPMD) Simulation Loop

Each molecular dynamics step requires a self-consistent iterative convergence to the electronic
ground state, with the following steps:

for iscf = 1, nscf

compute charge density

compute xc potential

for ite = 1, nite

compute total energy

apply Hamiltonian operator to wavefunction, update wavefunction

Gram-Schmidt orthogonalization

end

subspace diagonalization

end

The inner iteration loop typically uses only 2-4 steps, whereas the outer loop can use anywhere
from 3-100 steps, depending on the starting point and the smoothness of the potentials.

3.2 Domain Decomposition

Qbox uses a 2D process grid for its data distribution and communication. The main data object
is the electronic wavefunction (ngw × nst), nst electronic orbitals each expanded in a plane wave
basis of ngw complex coefficients. The wavefunction is distributed in a column-major distribution
over nprow × npcol MPI tasks. Each process column owns nst/npcol orbitals, distributed so that
any given process row has the same subset of basis functions (ngw/nprow) of all orbitals.

3.3 Computational Workload

The computational workload is primarily a mix of 3D FFTs and dense linear algebra, and is de-
scribed in detail in the next section. Each step in the iteration loop consists of a mix of computation
and communication, as follows:

3.3.1 Compute Charge Density

The electronic orbitals on each process column are transformed to real space with a 3D FFT, then
summed across process rows using MPI Allreduce to compute the total charge density. A copy of
the charge density is distributed over each process column.



3.3.2 Compute XC Potential

The charge density gradient is computed on each process column using a 3D FFT, and the exchange-
correlation potential is computed locally from the density and gradient points stored on each task
in the process column using one of several density functionals.

3.3.3 Compute Total Energy

The local contribution to the kinetic energy is computed, and then summed over all tasks (1 double,
Allreduce sum over all tasks). Other energy terms are computed from local data using loops and
zgemms and summed over all tasks within each process column (1 double, Allreduce sum over
nprow tasks).

3.3.4 Apply Hamiltonian Operator, Update Wavefunction

The Hamiltonian operator is applied to local wavefunction data using loops and zgemms, followed
by two 3D FFTs (forward and backward) for each orbital. The resulting data structure has the same
size and data layout as the original wavefunction, which is then used to update the wavefunction
with a parallel zgemm over all tasks.

3.3.5 Gram-Schmidt Orthogonalization

The new wavefunction is orthogonalized using Gram-Schmidt: compute S = Y TY using a parallel
rank-k update (pzherk), perform a Cholesky decomposition on S (pzpotrf), followed by a triangular
solve (pztrsm).

3.3.6 Subspace Diagonalization

The product of the transposed wavefunction Y T and the Hamiltonian operator HY are computed
with a parallel matrix multiply, then a symmetric eigensolve is performed to compute the eigenvalues
and eigenvectors.

3.4 Communication Structure

3D FFTs are done within each column of the 2D grid. Planes of data are distributed over tasks in
the process column. In the forward direction, FFTs in x- and y- are done locally with loops of 1D
FFTs, followed by an Alltoallv transpose (over nprow tasks), followed by the remaining 1D FFTs
in the z-direction. Backward transforms do the same operations in reverse order.

Parallel matrix multiplication is carried out over all tasks using ScaLAPACK, which manages
the communication. Any threading is handled by the use of threaded single-node kernels.

Gram-Schmidt and subspace diagonalization both involve matrix multiplication of the form
ATA, the product of which ends up distributed on just the upper npcol × npcol square of the
process grid. In cases where the process grid is very rectangular (nprow >>npcol), this may lead
to a very small fraction of tasks carrying out the parallel Cholesky decomposition and symmetric
eigensolve, both of which are ScaLAPACK calls.

3.5 Simulation Examples

To give an idea of typical data sizes and process grid dimensions, timings of a recent simulation are
presented. The system is a carbon electrolyte, with 192 carbon atoms, 192 oxygen atoms, and 256



hydrogen atoms (2176 total electrons). The plane wave basis is defined by an energy cutoff of 85 Ry,
and the electronic wavefunction matrix has dimension 322048 × 1216. The charge density uses a
higher resolution basis of 2465104 plane waves, a copy of which distributed across each process
column.

Running on 128 nodes of the LLNL Cab machine with 16 MPI tasks per node and one thread
(2048 MPI tasks total), the optimal process grid was found to be 256 × 8. Each MD iteration had
5 self-consistent iterations with two inner iterations. The time per MD iteration was 38 seconds on
average, with the following breakdown:

Phase Time (s)

compute charge density 11.2
compute xc potential 0.2
compute total energy 2.1
apply Hamil., update wf 14.5
Gram-Schmidt orthog 6.0
Subspace diagonalization 5.7

Table 2: Time for different phases in Qbox

The workload is spread pretty evenly across 3D FFTs, parallel matrix multiplication and the
square dense linear algebra operations. The fraction of time spent in communication was not
directly measured for this run, but is typically 20-30% for a simulation of this size.

3.6 Profiling Data

4 Conclusion
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